В классической механике понятие неголономности применяется, как правило, лишь к связям, наложенным на систему. При этом динамической системе с наложенной кинетической неголономной связью можно сопоставить векторное поле. Одной из характеристик такого поля является степень неголономности, которая определяет свойства геометрии данного поля. Однако использование этой характеристики в геометрии векторных полей ограничивалось полями в евклидовом пространстве. В данной статье предложено обобщение понятия степени неголономности на поля, определённые в неевклидовых пространствах. Для этого степень неголономности рассматривается как трёхлинейная форма. Коэффициенты этой формы, очевидно, связаны с компонентами метрического тензора пространства, в котором определено векторное поле. Соответственно, обобщение метрического тензора на случай неевклидового пространства порождает обобщения коэффициентов трёхлинейной формы, которые, в свою очередь, обобщают понятие степени неголономности. В качестве примера в данной статье проводится анализ неголономности гамильтоновых векторных полей. Также ставится вопрос о возможности применения данного метода и о существовании механической трактовки полученных результатов.