Существующие теории разрешимости систем нелинейных дифференциальных уравнений в конечном виде представляют собой обобщения теории Галуа и по этой причине список элементарных операций в этих теория считается предметом договора. В своих Стокгольмских лекциях (1897) Пенлеве на примере уравнений 1-го и 2-го порядка указал свойство, общее всем уравнениям, разрешимым в элементарных, специальных и абелевых функциях: общее решения этих уравнений зависят от констант интегрирования алгебраически. Тем самым зафиксировав алгебраические свойства общего решения, можно выделить класс общеупотребимых трансцендентных функций. Это утверждение можно вписать в круг идей теории Галуа, тем самым построив для дифференциальных уравнений теорию и без фиксации этого списка.