РУсскоязычный Архив Электронных СТатей периодических изданий
Вестник Российского университета дружбы народов. Серия: Математика, информатика, физика/2014/№ 1/

Об особенности функции Грина оператора Шрёдингера с потенциалами, сингулярными в начале координат

Исследуется асимптотика при r → 0 функции Грина оператора Шрёдингера − Δ + V (r) с короткодействующим потенциалом V произвольной формы, имеющим особенность в начале координат вида r с ρ > 0. Под короткодействием потенциала понимается убывание на бесконечности, более быстрое, чем убывание Кулоновского потенциала. Исследование производится при помощи интегрального уравнения Липпманна– Швингера для функции Грина в координатном представлении. Показано, что для описания асимптотики необходимо различить три случая в зависимости от значения параметра потенциала ρ. Если особенность потенциала слабее чем кулоновская, то асимптотика функции Грина имеет стандартное сингулярное поведение, именно особенность вида r. В случае особенности потенциала вида r с 1 6 ρ < 2 в асимптотике функции Грина возникает дополнительная сингулярность. В случае ρ = 1 дополнительная логарифмическая сингулярность имеет ту же форму, что и в случае кулоновского потенциала. В случае 1 < ρ < 2 дополнительная сингулярность имеет вид полярной особенности вида r. Во всех перечисленных случаях сингулярные члены асимптотических разложений выражены в явном виде через параметры потенциала V , определяющие его поведение в начале координат. Исследованная проблема имеет ряд интересных приложений в физике, в частности она имеет важное значение в теории потенциалов нулевого радиуса.

Авторы
Тэги
Тематические рубрики
Предметные рубрики
В этом же номере:
Резюме по документу**
** - вычисляется автоматически, возможны погрешности

Похожие документы: