Предложен метод анализа линейных и квазилинейных модельных систем обыкновенных дифференциальных уравнений (ОДУ) с полиномиально периодической матрицей при наличии определяющей матрицы A0 (t) различной стабильной жордановой структуры. С помощью современного алгоритма метода расщепления (предложенного в девяностых годах двадцатого века) изучены новые вышеуказанные классы систем ОДУ. Для этик классов сформулирован ряд нетривиальных теорем о приводимости к эквивалентным системам с почти диагональной матрицей, что позволяет найти достаточные условия устойчивости решения таких систем. Разработанный метод дал возможность исследовать ряд конкретных прикладных модельных задач, что обобщает или уточняет известные ранее результаты.