Рассматривается задача нейронного управления динамическим объектом с параметрической неопределенностью. Предлагается новая архитектура организации технологического процесса через параллельное взаимодействие технологических модулей – однослойных нейронных сетей. На основе прямого метода Ляпунова и метода скоростного градиента в классе абсолютно устойчивых систем разработан нелинейный алгоритм оперативного обучения и управления. Разработанный алгоритм адаптации позволяет ускорить сходимость нейро-нечеткого управления через обучение нейронной сети в реальном времени, осуществить предварительное обучение и применить эффективные процедуры инициализации ее параметров. За счет дополнительной обратной связи по управлению и организации скользящих режимов в окрестностях особых точек нелинейного безынерционного преобразователя обеспечивается свойство нечувствительности системы к внешним, параметрическим и динамическим возмущениям. В отличие от традиционного адаптивного подхода при организации нейроподобных структур условие гурвицевости матрицы при векторе состояния линейной части замкнутой системы может не выполняться, а областью допустимых значений параметра регулятора является все множество действительных чисел. Программно-аппаратную реализацию блока принятия решения ассоциативного автомата адаптивного управления предполагается реализовать в информационноуправляющей системе реального времени на основе применения новой структурной организации схемы Мура.