РУсскоязычный Архив Электронных СТатей периодических изданий
Сибирский журнал вычислительной математики/2015/№ 3/
В наличии за
300 руб.
Купить
Облако ключевых слов*
* - вычисляется автоматически
Недавно смотрели:

Решение задачи коммивояжера с использованием рекуррентной нейронной сети

Предложен новый алгоритм (NWTA-алгоритм) решения задачи коммивояжера. Алгоритм основан на использовании рекуррентной нейронной сети Хопфилда, метода WTA (“Winner takes all”) формирования цикла и метода 2-opt его оптимизации. Особенностью предложенного алгоритма является использование метода частичных (префиксных) сумм для ускорения решения системы уравнений сети Хопфилда. Для получения дополнительного ускорения выполнено распараллеливание предложенного алгоритма на графическом процессоре с использованием технологии CUDA. На ряде примеров из библиотеки TSPLIB с числом городов от 51 до 2392 показано, что NWTA-алгоритм находит приближенные решения задачи коммивояжера (относительное увеличение длины маршрута по сравнению с оптимальной составляет 0.03 ÷ 0.14). При большом числе городов (130 и выше) время работы NWTA-алгоритма в 4 ÷ 24 раз меньше времени работы эвристического алгоритма LKH, посредством которого получены оптимальные решения для всех примеров из TSPLIB.

Авторы
Тэги
Тематические рубрики
Предметные рубрики
В этом же номере:
Резюме по документу**
Алгоритм основан на использовании рекуррентной нейронной сети Хопфилда, метода WTA (“Winner takes all”) формирования цикла и метода 2-opt его оптимизации. <...> Особенностью предложенного алгоритма является использование метода частичных (префиксных) сумм для ускорения решения системы уравнений сети Хопфилда. <...> Для получения дополнительного ускорения выполнено распараллеливание предложенного алгоритма на графическом процессоре с использованием технологии CUDA. <...> На ряде примеров из библиотеки TSPLIB с числом городов от 51 до 2392 показано, что NWTA-алгоритм находит приближенные решения задачи коммивояжера (относительное увеличение длины маршрута по сравнению с оптимальной составляет 0.03 0.14). <...> При большом числе городов (130 и выше) время работы NWTA-алгоритма в 4 24 раз меньше времени работы эвристического алгоритма LKH, посредством которого получены оптимальные решения для всех примеров из TSPLIB. <...> Алгоритм основан на использовании рекуррентной нейронной сети Хопфилда, метода WTA (“Winner takes all”) формирования цикла и метода 2-opt его оптимизации. <...> Особенностью предложенного алгоритма является использование метода частичных (префиксных) сумм для ускорения решения системы уравнений сети Хопфилда. <...> Для получения дополнительного ускорения выполнено распараллеливание предложенного алгоритма на графическом процессоре с использованием технологии CUDA. <...> На ряде примеров из библиотеки TSPLIB с числом городов от 51 до 2392 показано, что NWTA-алгоритм находит приближенные решения задачи коммивояжера (относительное увеличение длины маршрута по сравнению с оптимальной составляет 0.03 0.14). <...> При большом числе городов (130 и выше) время работы NWTA-алгоритма в 4 24 раз меньше времени работы эвристического алгоритма LKH, посредством которого получены оптимальные решения для всех примеров из TSPLIB. <...>
** - вычисляется автоматически, возможны погрешности

Похожие документы: