Непрерывные характеры топологических абелевых nарных полугрупп с сокращениями
В работе изучаются гомоморфизмы топологических абелевых n-арных полугрупп с сокращениями в группу по умножению всех комплексных чисел по модулю равных 1. Такие отображения называются характерами. Множество всех непрерывных характеров топологической n-арной полугруппы X обозначаем
ˆX . Относительно поточечного умножения характеров множество ˆX является бинарной группой. В качестве предварительного результата показано, что абелеву n-арную полугруппу с сокращениями X можно рассматривать в качестве n-арной подполугруппы n-арной группы G, которую по аналогии с бинарным
случаем можно назвать n-арной группой частных абелевой n-арной полугруппы с сокращениями. В теореме 1 показано, что каждый характер абелевой n-арной полугруппы естественным образом продолжается до характера на n-арную группу ее частных. Группа ˆX наделяется топологией равномерной сходимости на компактных множествах. В теореме 2 устанавливается, что эта топология согласована с групповой структурой, т. е. ˆX становится топологической бинарной группой. В теореме 3 найдены условия, при которых
группа ˆX алгебраически и топологически изоморфна группе ˆG . Группу непрерывных характеров бинарной группы ˆX обозначаем символом ˆˆX . По аналогии с бинарным случаем рассматривается естественное
отображение p из X в ˆˆX , которое для каждого x из X соотносит характер ( ) x p группы ˆX в соответствии с формулой ( )( ) ( ) x x p χ = χ ( ) ˆX χ∈ . В теореме 4 устанавливается, что если на топологической абелевой n-арной полугруппе с сокращениями X существует ненулевая инвариантная борелевская мера, то отображение p непрерывно и инъективно, X обладает непустым открытым множеством U таким, что сужение p на U является гомеоморфизмом U на открытое подмножество ( ) U p группы ˆˆX .
Авторы
Тэги
Тематические рубрики
Предметные рубрики
В этом же номере:
Резюме по документу**
В работе изучаются гомоморфизмы топологических абелевых n-арных полугрупп с сокращениями в группу по умножению всех комплексных чисел по модулю равных 1. <...> Множество всех непрерывных характеров топологической n-арной полугруппы X обозначаем
ˆX . <...> Относительно поточечного умножения характеров множество ˆX является бинарной группой. <...> В качестве предварительного результата показано, что абелеву n-арную полугруппу с сокращениями X можно рассматривать в качестве n-арной подполугруппы n-арной группы G, которую по аналогии с бинарным
случаем можно назвать n-арной группой частных абелевой n-арной полугруппы с сокращениями. <...> В теореме 1 показано, что каждый характер абелевой n-арной полугруппы естественным образом продолжается до характера на n-арную группу ее частных. <...> Группа ˆX наделяется топологией равномерной сходимости на компактных множествах. <...> В теореме 2 устанавливается, что эта топология согласована с групповой структурой, т. е. ˆX становится топологической бинарной группой. <...> Группу непрерывных характеров бинарной группы ˆX обозначаем символом ˆˆX . <...> В теореме 4 устанавливается, что если на топологической абелевой n-арной полугруппе с сокращениями X существует ненулевая инвариантная борелевская мера, то отображение p непрерывно и инъективно, X обладает непустым открытым множеством U таким, что сужение p на U является гомеоморфизмом U на открытое подмножество ( ) U p группы ˆˆX . <...> В работе изучаются гомоморфизмы топологических абелевых n-арных полугрупп с сокращениями в группу по умножению всех комплексных чисел по модулю равных 1. <...> Множество всех непрерывных характеров топологической n-арной полугруппы X обозначаем
ˆX . <...> Относительно поточечного умножения характеров множество ˆX является бинарной группой. <...> В качестве предварительного результата показано, что абелеву n-арную полугруппу с сокращениями X можно рассматривать в качестве n-арной подполугруппы n-арной группы G, которую по аналогии с бинарным
случаем <...>
** - вычисляется автоматически, возможны погрешности
Похожие документы: