Актуальность и цели. Проблема продолжения потенциальных полей возникает во многих областях физики и техники: в геофизике – при продолжении полей, измеренных на поверхности Земли, в глубь Земли; в метеорологии – при определении границ атмосферных полей; в дефектоскопии – для исследования внутренних свойств материалов без их разрушения и в ряде других областей. Несмотря на то, что для этих задач предлагаются различные методы, все они, как правило, сводятся к интегральным уравнениям Фредгольма первого рода, которые являются некорректными задачами. Применение классических разностных методов невозможно, как показали численные эксперименты, из-за их неустойчивости. Так как разностные схемы обладают простотой и быстродействием, представляет значительный интерес построение специальных устойчивых схем. Данная статья посвящена построению устойчивых разностных схем продолжения потенциальных полей Материалы и методы. В основу построения разностных схем и продолжения потенциальных полей положены оптимальные методы аппроксимации потенциальных полей, принадлежащих классам функций Q(Ω,M)